



## **DPP - 1 (Gravitational Force)**

Video Solution on Website:-https://physicsaholics.com/home/courseDetails/99Video Solution on YouTube:-https://youtu.be/9CxK\_BHWHkAWritten Solution on Website:-https://physicsaholics.com/note/notesDetails/54

Q 1. By what percent will the gravitational force between the two bodies be increased if their masses are increased by 50%
(a) 50 %
(b) 100 %
(c) 75 %

| (c) 75 % | (d) 125 % |
|----------|-----------|
| (0) 75 % | (u) 123   |

- Q 2. What will happen to the gravitational force between two bodies if they are brought closer by half of their initial separation ?
  (a) It increases to 2 times
  (b) It decreases to 4 times
  (c) It decreases to 2 times
  (d) It increases to 4 times
- Q 3. The force of gravitation between two bodies does not depend upon
  - (a) The separation between them
  - (b) The gravitational constant
  - (c) The product of their masses
  - (d) the sum of their masses

(c)  $8.326 \times 10^{-8}$  N

Q 4. The gravitational force between two stones of mass 1 kg each, separated by a distance of 1 m in vacuum is.
(a) zero
(b) 6.675 × 10<sup>-6</sup>N

(d)  $6.675 \times 10^{-11}$  N

- Q 5. If F is the force between two bodies of masses  $m_1$  and  $m_2$  at certain separation. Find the force between  $\sqrt{2}m_1$  and  $\sqrt{3}m_2$  at same separation (a) F (b) 5F (c) 6F (d)  $\sqrt{6}F$
- Q 6. Two planet of mass m and 100m. If gravitational force exerted by planet of mass 100m on the planet of mass m is  $F_1$  and gravitational force exerted by planet of mass m on the planet of mass 100m is  $F_2$ . Then which of the following is true?
  - (a)  $F_1 = 100F_2$ (b)  $F_1 = 10F_2$ (c)  $F_1 = F_2$ (d)  $F_2 = 100F_1$
- Q 7. Find the gravitational force between two protons kept at a separation of 1 femtometer (1 femtometer =  $10^{-15}$ m). The mass of a protons is  $1.67 \times 10^{-27}$ kg (a)  $1.8 \times 10^{-42}$ N (b)  $1.8 \times 10^{-29}$ N (c)  $1.8 \times 10^{-34}$ N (d)  $1.86 \times 10^{-36}$ N





Q 8. A mass is at the center of a square, with four masses at the corners as shown. Rank the choices according to the magnitude of the gravitational force on the center mass.



Q 9. Four similar particles of mass M are orbiting in a circle of radius r in the same angular direction because of their mutual gravitational attractive force. Velocity of a particle is given by



Q 10. A mass m is at a distance a from one end of a uniform rod of length l and mass M. Find the gravitational force on the mass due to the rod.



Q 11. Gravitational force between two masses at a distance 'd' apart is 6N. If these masses are taken to moon and kept at same separation, then the force between them will become : (a) 1 N (b)  $\frac{1}{2}$  N

| (a) I N  | $(b) - N_{6}$ |
|----------|---------------|
| (c) 36 N | (d) 6 N       |

Q 12. Gravitational force \_\_\_\_\_ on the nature of the medium between the masses.





(a) depends(c) sometimes depends

(b) does not depend(d) none of these

- Q 13. Two spheres of masses m and M are situated in air and the gravitational force between the is F. The space around the masses is now filled with a liquid of specific gravity 3. The gravitational force between spheres will now be
  - (a) 3F (b) F (c)  $\frac{F}{3}$  (d)  $\frac{F}{9}$



## **Answer Key**

| Q.1 d  | Q.2 d  | Q.3 d  | Q.4 d | Q.5 d  |
|--------|--------|--------|-------|--------|
| Q.6 c  | Q.7 c  | Q.8 a  | Q.9 a | Q.10 d |
| Q.11 d | Q.12 b | Q.13 b |       | 1      |